123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148 |
- <?php
- /**
- * PHPExcel
- *
- * Copyright (c) 2006 - 2014 PHPExcel
- *
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with this library; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * @category PHPExcel
- * @package PHPExcel_Shared_Trend
- * @copyright Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel)
- * @license http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt LGPL
- * @version ##VERSION##, ##DATE##
- */
- require_once(PHPEXCEL_ROOT . 'PHPExcel/Shared/trend/bestFitClass.php');
- /**
- * PHPExcel_Exponential_Best_Fit
- *
- * @category PHPExcel
- * @package PHPExcel_Shared_Trend
- * @copyright Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel)
- */
- class PHPExcel_Exponential_Best_Fit extends PHPExcel_Best_Fit
- {
- /**
- * Algorithm type to use for best-fit
- * (Name of this trend class)
- *
- * @var string
- **/
- protected $_bestFitType = 'exponential';
- /**
- * Return the Y-Value for a specified value of X
- *
- * @param float $xValue X-Value
- * @return float Y-Value
- **/
- public function getValueOfYForX($xValue) {
- return $this->getIntersect() * pow($this->getSlope(),($xValue - $this->_Xoffset));
- } // function getValueOfYForX()
- /**
- * Return the X-Value for a specified value of Y
- *
- * @param float $yValue Y-Value
- * @return float X-Value
- **/
- public function getValueOfXForY($yValue) {
- return log(($yValue + $this->_Yoffset) / $this->getIntersect()) / log($this->getSlope());
- } // function getValueOfXForY()
- /**
- * Return the Equation of the best-fit line
- *
- * @param int $dp Number of places of decimal precision to display
- * @return string
- **/
- public function getEquation($dp=0) {
- $slope = $this->getSlope($dp);
- $intersect = $this->getIntersect($dp);
- return 'Y = '.$intersect.' * '.$slope.'^X';
- } // function getEquation()
- /**
- * Return the Slope of the line
- *
- * @param int $dp Number of places of decimal precision to display
- * @return string
- **/
- public function getSlope($dp=0) {
- if ($dp != 0) {
- return round(exp($this->_slope),$dp);
- }
- return exp($this->_slope);
- } // function getSlope()
- /**
- * Return the Value of X where it intersects Y = 0
- *
- * @param int $dp Number of places of decimal precision to display
- * @return string
- **/
- public function getIntersect($dp=0) {
- if ($dp != 0) {
- return round(exp($this->_intersect),$dp);
- }
- return exp($this->_intersect);
- } // function getIntersect()
- /**
- * Execute the regression and calculate the goodness of fit for a set of X and Y data values
- *
- * @param float[] $yValues The set of Y-values for this regression
- * @param float[] $xValues The set of X-values for this regression
- * @param boolean $const
- */
- private function _exponential_regression($yValues, $xValues, $const) {
- foreach($yValues as &$value) {
- if ($value < 0.0) {
- $value = 0 - log(abs($value));
- } elseif ($value > 0.0) {
- $value = log($value);
- }
- }
- unset($value);
- $this->_leastSquareFit($yValues, $xValues, $const);
- } // function _exponential_regression()
- /**
- * Define the regression and calculate the goodness of fit for a set of X and Y data values
- *
- * @param float[] $yValues The set of Y-values for this regression
- * @param float[] $xValues The set of X-values for this regression
- * @param boolean $const
- */
- function __construct($yValues, $xValues=array(), $const=True) {
- if (parent::__construct($yValues, $xValues) !== False) {
- $this->_exponential_regression($yValues, $xValues, $const);
- }
- } // function __construct()
- } // class exponentialBestFit
|